Skip to main content

Improve LIKE's performance

· 5 min read
James Xu

What is LIKE?

LIKE is a very useful SQL operator. It is used to do string pattern matching. The following examples for LIKE usage are from the Presto doc:
SELECT * FROM (VALUES ('abc'), ('bcd'), ('cde')) AS t (name)
WHERE name LIKE '%b%'
--returns 'abc' and 'bcd'

SELECT * FROM (VALUES ('abc'), ('bcd'), ('cde')) AS t (name)
WHERE name LIKE '_b%'
--returns 'abc'

SELECT * FROM (VALUES ('a_c'), ('_cd'), ('cde')) AS t (name)
WHERE name LIKE '%#_%' ESCAPE '#'
--returns 'a_c' and '_cd'

These examples show the basic usage of LIKE:

  • Use % to match zero or more characters.
  • Use _ to match exactly one character.
  • If we need to match % and _ literally, we can specify an escape char to escape them.

When we use Velox as the backend to evaluate Presto's query, LIKE operation is translated into Velox's function call, e.g. name LIKE '%b%' is translated to like(name, '%b%'). Internally Velox converts the pattern string into a regular expression and then uses regular expression library RE2 to do the pattern matching. RE2 is a very good regular expression library. It is fast and safe, which gives Velox LIKE function a good performance. But some popularly used simple patterns can be optimized using direct simple C++ string functions instead of regex. e.g. Pattern hello% matches inputs that start with hello, which can be implemented by direct memory comparison of prefix ('hello' in this case) bytes of input:

// Match the first 'length' characters of string 'input' and prefix pattern.
bool matchPrefixPattern(
StringView input,
const std::string& pattern,
size_t length) {
return input.size() >= length &&
std::memcmp(input.data(), pattern.data(), length) == 0;
}

It is much faster than using RE2. Benchmark shows it gives us a 750x speedup. We can do similar optimizations for some other patterns:

  • %hello: matches inputs that end with hello. It can be optimized by direct memory comparison of suffix bytes of the inputs.
  • %hello%: matches inputs that contain hello. It can be optimized by using std::string_view::find to check whether inputs contain hello.

These simple patterns are straightforward to optimize. There are some more relaxed patterns that are not so straightforward:

  • hello_velox%: matches inputs that start with 'hello', followed by any character, then followed by 'velox'.
  • %hello_velox: matches inputs that end with 'hello', followed by any character, then followed by 'velox'.
  • %hello_velox%: matches inputs that contain both 'hello' and 'velox', and there is a single character separating them.

Although these patterns look similar to previous ones, but they are not so straightforward to optimize, _ here matches any single character, we can not simply use memory comparison to do the matching. And if user's input is not pure ASCII, _ might match more than one byte which makes the implementation even more complex. Also note that the above patterns are just for illustrative purpose. Actual patterns can be more complex. e.g. h_e_l_l_o, so trivial algorithm will not work.

Optimizing Relaxed Patterns

We optimized these patterns as follows. First, we split the patterns into a list of sub patterns, e.g. hello_velox% is split into sub-patterns: hello, _, velox, %, because there is a % at the end, we determine it as a kRelaxedPrefix pattern, which means we need to do some prefix matching, but it is not a trivial prefix matching, we need to match three sub-patterns:

  • kLiteralString: hello
  • kSingleCharWildcard: _
  • kLiteralString: velox

For kLiteralString we simply do a memory comparison:

if (subPattern.kind == SubPatternKind::kLiteralString &&
std::memcmp(
input.data() + start + subPattern.start,
patternMetadata.fixedPattern().data() + subPattern.start,
subPattern.length) != 0) {
return false;
}

Note that since it is a memory comparison, it handles both pure ASCII inputs and inputs that contain Unicode characters.

Matching _ is more complex considering that there are variable length multi-bytes character in unicode inputs. Fortunately there are existing libraries which provides unicode related operations: utf8proc. It provides functions that tells us whether a byte in input is the start of a character or not, how many bytes current character consists of etc. So to match a sequence of _ our algorithm is:

if (subPattern.kind == SubPatternKind::kSingleCharWildcard) {
// Match every single char wildcard.
for (auto i = 0; i < subPattern.length; i++) {
if (cursor >= input.size()) {
return false;
}

auto numBytes = unicodeCharLength(input.data() + cursor);
cursor += numBytes;
}
}

Here:

  • cursor is the index in the input we are trying to match.
  • unicodeCharLength is a function which wraps utf8proc function to determine how many bytes current character consists of.

So the logic is basically repeatedly calculate size of current character and skip it.

It seems not that complex, but we should note that this logic is not effective for pure ASCII input. Every character is one byte in pure ASCII input. So to match a sequence of _, we don't need to calculate the size of each character and compare in a for-loop. In fact, we don't need to explicitly match _ for pure ASCII input as well. We can use the following logic instead:

for (const auto& subPattern : patternMetadata.subPatterns()) {
if (subPattern.kind == SubPatternKind::kLiteralString &&
std::memcmp(
input.data() + start + subPattern.start,
patternMetadata.fixedPattern().data() + subPattern.start,
subPattern.length) != 0) {
return false;
}
}

It only matches the kLiteralString pattern at the right position of the inputs, _ is automatically matched(actually skipped). No need to match it explicitly. With this optimization we get 40x speedup for kRelaxedPrefix patterns, 100x speedup for kRelaxedSuffix patterns.

Thank you Maria Basmanova for spending a lot of time reviewing the code.